Computing matrix inversion with optical networks.
نویسندگان
چکیده
With this paper we bring about a discussion on the computing potential of complex optical networks and provide experimental demonstration that an optical fiber network can be used as an analog processor to calculate matrix inversion. A 3x3 matrix is inverted as a proof-of-concept demonstration using a fiber network containing three nodes and operating at telecomm wavelength. For an NxN matrix, the overall solving time (including setting time of the matrix elements and calculation time of inversion) scales as O(N(2)), whereas matrix inversion by most advanced computer algorithms requires ~O(N(2.37)) computational time. For well-conditioned matrices, the error of the inversion performed optically is found to be around 3%, limited by the accuracy of measurement equipment.
منابع مشابه
A Direct Matrix Inversion-Less Analysis for Distribution System Power Flow Considering Distributed Generation
This paper presents a new direct matrix inversion-less analysis for radial distribution systems (RDSs). The method can successfully deal with weakly meshed distribution systems. (WMDSs). Being easy to implement, direct methods (DMs) provide an excellent performance. Matrix inversion is the mean reason of divergence and low-efficiency in power flow algorithms. In this paper, the performance of t...
متن کاملReduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملA stable iteration to the matrix inversion
The matrix inversion plays a signifcant role in engineering and sciences. Any nonsingular square matrix has a unique inverse which can readily be evaluated via numerical techniques such as direct methods, decomposition scheme, iterative methods, etc. In this research article, first of all an algorithm which has fourth order rate of convergency with conditional stability will be proposed. ...
متن کاملRecurrent Neural Networks for Computing Pseudoinverses of Rank-Deficient Matrices
Three recurrent neural networks are presented for computing the pseudoinverses of rank-deficient matrices. The first recurrent neural network has the dynamical equation similar to the one proposed earlier for matrix inversion and is capable of Moore–Penrose inversion under the condition of zero initial states. The second recurrent neural network consists of an array of neurons corresponding to ...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2014